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The Philosophic Problem

L. Kronecker: The natural numbers were created by God. Another
mathematics is due to humanity.

VS

V. Remeslennikov: The algebraic geometry over N is only an exercise
before the geometry over free monoids.
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Preliminaries Coe�cient-free equations Systems with Coe�cients Generalizations

Languages

Let L = 〈∗(2), 1〉 be a standard language of monoid theory. Further
we shall consider only commutative monoids and write +, 0 instead
∗, 1.

We add to L the set of constant symbols {ca|a ∈ A}, where A is an
arbitrary monoid. Denote the union L ∪ {ca |a ∈ A} by LA.
We write the axioms of the theory of commutative monoids:

1 ∀x∀y∀z (x+ y) + z = x+ (y + z);
2 ∀x x+ 0 = 0 + x = x;
3 ∀x∀y x+ y = y + x;

and the obvious axioms with constant symbols:

1 cai 6= caj , i 6= j;
2 cai + caj = cai+aj ;

3 ca = 0⇔ a = 0.

An LA-structure (a model of the language LA) M is said to be an
A-monoid if M satis�es all formulas above. In other words,
A-monoid is a monoid with a �xed submonoid isomorphic to A.
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Systems of Equations

An atomic LA-formula t(x̄) = s(x̄) is called an equation over A
(A-equation for short). An A-equation is said to be coe�cients-free
if it does not contain constant symbols. Remind that all 0-equations
(A = {0}) are coe�cient-free.

A system of equations S over A is an arbitrary set of A-equations.

Clearly, each A-equation has an equivalent form∑
i∈I

γixi + a =
∑
j∈J

γjxj + a′,

where a, a′ ∈ A.
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We can seek a solution of S in every commutative monoid B.

The solutions of S over B is denoted by VB(S).

We chose the most famous commutative monoid N (the additive monoid
of natural numbers) and studied its algebraic geometry (further B = N).
Below we generalize our results for N to a wide class of commutative
monoids.
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A set Y ⊆ Nn is called algebraic over N if there exists a system of
equations with Y = VN(S).

An algebraic set is said to be irreducible if it is not represented as a
nontrivial union of algebraic sets.

The radical of a set Y (or a system S) contains all A-equations
satis�ed by all points from Y (by all solutions of S).
The radical of Y divides the set of LA-terms into equivalence
classes. Indeed, two LA-terms t(x̄), s(x̄) are equivalent i�
t(ȳ) = s(ȳ) for all y ∈ Y . It is easy to prove that equivalence
relation preserves the operation +, thus RadN(Y ) de�nes the
congruence θRad.

The quotient monoid ΓA(Y ) = TLN(X)/θRadB(Y ), where TLN(X) is a
set of all LA-terms, is called the coordinate A-monoid of Y . The
operation + over ΓA(Y ) is de�ned by

[t(x̄)] + [s(x̄)] = [s(x̄) + t(x̄)],

where [t(x̄)] is the equivalence class of t(x̄).
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Main Aims of Algebraic Geometry

The main goal of algebraic geometry can be considered as a classi�cation
of

1 algebraic sets;

2 radicals;

3 coordinate monoids;
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Fact. The monoid N is A-equationally Noetherian, i.e. for each in�nite
system of A-equations S which depends on a �nite set of variables
x1, . . . , xn there exists a �nite subsystem S0 ⊆ S such that
VN(S) = VN(S0).
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De�nitions for Uni�cation Theorems

An A-homomorphism ϕ is a homomorphism of A-monoid M and ϕ
is an identity on A (ϕ(a) = a, a ∈ A).

A universal formula has a form ∀x̄Φ(x̄), where Φ is a quanti�er-free
formula.

A quasi-identity is a universal formula, where
Φ(x̄) = (t1(x̄) = s1(x̄)) ∧ . . . ∧ (tm(x̄) = sm(x̄))→ (t(x̄) = s(x̄)).

We shall use standard denotations of algebraic geometry:

the letter 'D' means 'E. Daniyarova';

the letter 'M' means 'A. Myasnikov';

the letter 'R' means 'V. Remeslennikov'.
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The First Uni�cation Theorem

Theorem (DMR)

Suppose C is an A-monoid and C is �nitely generated over A. Then the
following conditions are equivalent:
1) C is a coordinate monoid of an algebraic set over N, and this set is
de�ned by a system of A-equations.
2) C is A-separated by N. In other words, for an arbitrary elements c1, c2,
c1 6= c2 there exists a A-homomorphism ϕ : C → N such that
ϕ(c1) 6= ϕ(c2).
3) C ∈ qvarA(N), i.e. each LA-quasi-identity which is true in N holds in
C.
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The Second Uni�cation Theorem

Theorem (DMR)

Suppose C is an A-monoid and C is �nitely generated over A. Then the
following conditions are equivalent:
1) C is a irreducible coordinate monoid of an algebraic set over N, and
this set is de�ned by a system of A-equations.
2) C is A-discriminated by N. In other words, for an arbitrary elements
c1, . . . , ck, ci 6= cj there exists a A-homomorphism ϕ : C → N such that
ϕ(ci) 6= ϕ(cj).
3) C ∈ uclA(N), i.e. each LA-universal formula which is true in N holds
in C.
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Comparing with the Group Z

Theorem (a corollary from MR)

All coordinate groups over Z are the direct products Zn and irreducible.
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Coe�cient-free equations
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Positive property

In this subsection A = {0}.
A commutative monoid is called positive, if the following quasi-identity

∀x∀y (x+ y = 0)→ (x = 0).

holds. In other words, the sum of two nonzero elements of positive
monoid is not a zero.
Obviously, M is positive i� the set M\{0} is a semigroup.
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Classi�cation of Coordinate Monoids in Coe�cient-Free

Case

Theorem

A �nitely generated monoid M is a coordinate monoid of an algebraic set
Y over N, where Y is de�ned by coe�cient-free equations, i� M is
commutative positive and with cancellation property
(∀x∀y∀z (x+ z = y + z)→ (x = y)).

Theorem

All algebraic sets over N de�ned by coe�cient-free systems are
irreducible.
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Model-Theoretic Corollary

The classes qvar0(N),ucl0(N) are equal and axiomatizable by the
following L-formulas

1 ∀x∀y∀z (x+ y) + z = x+ (y + z);
2 ∀x x+ 0 = 0 + x = x;

3 ∀x∀y x+ y = y + x;

4 ∀x∀y∀z x+ z = y + z → x = y (cancellation property);

5 ∀x∀y x+ y = 0→ x = 0 (positive property).
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Geometrical Equivalence

1 Monoids M1,M2 are called geometrical equivalent if
RadM1(S) = RadM2(S) for every system S.

2 By de�nition, the geometrical equivalent monoids have the same set
of coordinate monoids. Therefore, the obtained results for N can be
applied to the wide class of commutative monoids.

Theorem

Each nontrivial commutative positive monoid with cancellation property
M is geometrical equivalent to N. Moreover, all algebraic sets over M
are irreducible, thus M is universal equivalent to N.
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Systems with Coe�cients
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Irreducible Coordinate Monoids

We can consider only the case A = N, because each N-equation can be
transformed to an A-equation for every monoid A ⊆ N.

An N-monoid M is called N-positive if for all pairs of nonzero elements
m1,m2 /∈ N their sum does not belong to N (m1 +m2 /∈ N).

The N-positive property for N is written by the series of N-formulas
(α ∈ N)

ϕα = ∀x∀y (x+ y = α)→ ((x = 0)∨ (x = 1)∨ (x = 2)∨ . . .∨ (x = α)).

N-monoid M is N-positive i� the set M\N is a semigroup.

N is obviously N-positive.
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Theorem

Suppose N-monoid M is coordinate monoid of an algebraic set over N.
Then M is irreducible i� M is N-positive.
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Reducible Sets. They really exist.

There are reducible sets over N de�ned by systems with coe�cient. For
example, the solution of x+ y = 1 is represented by the union
(0, 1) ∪ (1, 0).

Below we �nd necessary and su�cient conditions for an N-monoid M to
be coordinate over N. First Uni�cation Theorem made us to seek the set
of quasi-identities Q such that

1 if an N-monoid M |= Q then the set of N-homomorphisms
HomN(M,N) is not empty;

2 if an N-monoid M |= Q then N N-separates M .
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Congruent Closure

Let S be a set of atomic LA-formulas. The congruent closure [S] ⊇ S is
a minimal set with the properties

If t(x̄) = s(x̄) ∈ S, then t(x̄) = t(x̄) ∈ [S] and s(x̄) = s(x̄) ∈ [S].
If t(x̄) = s(x̄) ∈ S, then s(x̄) = t(x̄) ∈ [S].
If t(x̄) = s(x̄), s(x̄) = u(x̄) ∈ S, then s(x̄) = u(x̄) ∈ [S].
If t1(x̄) = s1(x̄), t2(x̄) = s2(x̄) ∈ S, then
t1(x̄) + t2(x̄) = s1(x̄) + s2(x̄) ∈ [S].

The congruent closure of a system of equations contains only elementary
corollaries of this system. By de�nition, [S] ⊆ RadN(S).
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Radicals and Congruent Closures of N-equations

If an N-equation t(x̄) = s(x̄) has not a form t′(x̄) = n the radical
RadN(t(x̄) = s(x̄)) is equal to the congruent closure. The radical of an
equation t(x̄) = n often strictly contains the congruent closure of this
equation.

For example, consider the equation 4x+ 3y + 7z = 7 which has only two
solutions (0, 0, 1), (1, 1, 0). The radical of this equation is generated by
4x+ 3y + 7z = 7 and x = y and therefore it is not equal to congruent
closure of 4x+ 3y + 7z = 7.

In other words, the equation 4x+ 3y + 7z = 7 implies x = y, thus the
quasi-identity

∀x∀y∀z(4x+ 3y + 7z = 7)→ (x = y)

must be true in every coordinate N-monoid over N.
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Quasi-identities Q

Suppose an N-equation t(x̄) = s(x̄) is unsolvable over Z. Then we
write a quasi-identity ∀x̄ (t(x̄) = s(x̄))→ (0 = 1).

Suppose an N-equation of a form t(x̄) = n, and it is unsolvable over
N. Then we write a quasi-identity ∀x̄ (t(x̄) = n)→ (0 = 1).
Suppose the equations eq1, . . . , eql generate the radical of an
equation t(x̄) = n. Then we write the quasi-identities

∀x̄ (t(x̄) = n)→ eq1,
. . .
∀x̄ (t(x̄) = n)→ eql,

Theorem

A commutative N-monoid with cancellation property M is a coordinate
monoid of a nonempty algebraic set over N i� all quasi-identities Q hold
in M .
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Unions of Algebraic Sets
Suppose Y1, . . . , Yn are algebraic irreducible sets and each Yi does not
contain in the union of

⋃
j 6=i Yj .

Further we �nd a criterion of the set Y1 ∪ . . . ∪ Yn to be algebraic.

Theorem

Suppose Y1 ∪ . . . ∪ Yn is algebraic. Then Y1, . . . , Yn can be obtained as a
parallel shift of the set Y0 via vectors with natural coordinates, where Y0

is algebraic and de�ned by a system of coe�cient-free equations.
(Necessary condition)

A variable x of a system S is called �xed if x = n ∈ RadN(S).

Theorem

Suppose systems S1, . . . ,Sn depend on variables x1, . . . , xm, and let the
union of the solutions of S1, . . . ,Sn be algebraic. Then all systems have
the same nonempty set of �xed coordinates. (Necessary condition)

Artem Shevlyakov Omsk Branch of Institute of Mathematics

Algebraic Geometry over the Additive Monoid of Natural Numbers



Preliminaries Coe�cient-free equations Systems with Coe�cients Generalizations

Criterion
Theorem

The union of algebraic sets Y1, . . . , Yn is an algebraic set i�

1 there exist systems of a form

S1 =



x1 = α11,

. . . . . .

xl = α1l,

t1(ȳ) + β11 = s1(ȳ),

. . . . . .

tm(ȳ) + β1m = sm(ȳ),

. . . Sn =



x1 = αn1,

. . . . . .

xl = αnl,

t1(ȳ) + βn1 = s1(ȳ),

. . . . . .

tm(ȳ) + βnm = sm(ȳ)

such that VN(Si) = Yi

2 The union of the solutions of the subsystems with variables xj is an
algebraic set.

3 rk(A|e|B) = rk(A|B) (over the �eld R), where A = (αij) is a
n× l-matrix, B = (βij) is a n×m-matrix, and e is a column of 1.
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Generalizations
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Generalizations

Suppose A,B are commutative positive monoids and A ⊆ B.

Theorem

Let M be a commutative A-positive monoid with cancellation property.
Suppose the set of A-homomorphisms HomA(M,B) is not empty. Then
M is irreducible coordinate monoid of an algebraic set over B.

Corollary

Let A-positive monoid M be a coordinate monoid of an nonempty
algebraic set over B. Then M is irreducible.

Remind that the theorem and corollary above contain only the necessary
condition. Indeed, if B = A = R+ and it is easy to prove that all
algebraic sets over R+ are irreducible. Moreover, there is not a universal
formula which expresses R+-positiveness property.
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