Algebraic Geometry over the Additive Monoid of Natural Numbers

Artem Shevlyakov
Omsk Branch of Institute of Mathematics

19th December, 2008

The Philosophic Problem

The Philosophic Problem

L. Kronecker: The natural numbers were created by God. Another mathematics is due to humanity.

VS

The Philosophic Problem

L. Kronecker: The natural numbers were created by God. Another mathematics is due to humanity.

VS

V. Remeslennikov: The algebraic geometry over \mathbb{N} is only an exercise before the geometry over free monoids.

Outline

1 Preliminaries

2 Coefficient-free equations

3 Systems with Coefficients

4 Generalizations

Languages

- Let $\mathcal{L}=\left\langle *^{(2)}, 1\right\rangle$ be a standard language of monoid theory. Further we shall consider only commutative monoids and write,+ 0 instead *, 1 .

Languages

- Let $\mathcal{L}=\left\langle *^{(2)}, 1\right\rangle$ be a standard language of monoid theory. Further we shall consider only commutative monoids and write,+ 0 instead *, 1 .
- We add to \mathcal{L} the set of constant symbols $\left\{c_{a} \mid a \in A\right\}$, where A is an arbitrary monoid. Denote the union $\mathcal{L} \cup\left\{c_{a} \mid a \in A\right\}$ by \mathcal{L}_{A}.

Languages

- Let $\mathcal{L}=\left\langle *^{(2)}, 1\right\rangle$ be a standard language of monoid theory. Further we shall consider only commutative monoids and write,+ 0 instead *, 1 .
- We add to \mathcal{L} the set of constant symbols $\left\{c_{a} \mid a \in A\right\}$, where A is an arbitrary monoid. Denote the union $\mathcal{L} \cup\left\{c_{a} \mid a \in A\right\}$ by \mathcal{L}_{A}. We write the axioms of the theory of commutative monoids:

1 $\forall x \forall y \forall z(x+y)+z=x+(y+z)$;
$2 \forall x x+0=0+x=x$;
$3 \forall x \forall y x+y=y+x$;
and the obvious axioms with constant symbols:
$1 c_{a_{i}} \neq c_{a_{j}}, i \neq j$;
$2 c_{a_{i}}+c_{a_{j}}=c_{a_{i}+a_{j}}$;
$3 c_{a}=0 \Leftrightarrow a=0$.

Languages

- Let $\mathcal{L}=\left\langle *^{(2)}, 1\right\rangle$ be a standard language of monoid theory. Further we shall consider only commutative monoids and write,+ 0 instead *, 1 .
- We add to \mathcal{L} the set of constant symbols $\left\{c_{a} \mid a \in A\right\}$, where A is an arbitrary monoid. Denote the union $\mathcal{L} \cup\left\{c_{a} \mid a \in A\right\}$ by \mathcal{L}_{A}. We write the axioms of the theory of commutative monoids:

1 $\forall x \forall y \forall z(x+y)+z=x+(y+z)$;
2 $\forall x x+0=0+x=x$;
$3 \forall x \forall y x+y=y+x$;
and the obvious axioms with constant symbols:
$11 c_{a_{i}} \neq c_{a_{j}}, i \neq j$;
$2 c_{a_{i}}+c_{a_{j}}=c_{a_{i}+a_{j}}$;
3 $c_{a}=0 \Leftrightarrow a=0$.

- An \mathcal{L}_{A}-structure (a model of the language \mathcal{L}_{A}) M is said to be an A-monoid if M satisfies all formulas above. In other words, A-monoid is a monoid with a fixed submonoid isomorphic to A.

Systems of Equations

- An atomic \mathcal{L}_{A}-formula $t(\bar{x})=s(\bar{x})$ is called an equation over A (A-equation for short). An A-equation is said to be coefficients-free if it does not contain constant symbols. Remind that all 0 -equations ($A=\{0\}$) are coefficient-free.
■ A system of equations \mathcal{S} over A is an arbitrary set of A-equations.

Systems of Equations

- An atomic \mathcal{L}_{A}-formula $t(\bar{x})=s(\bar{x})$ is called an equation over A (A-equation for short). An A-equation is said to be coefficients-free if it does not contain constant symbols. Remind that all 0 -equations ($A=\{0\}$) are coefficient-free.
- A system of equations \mathcal{S} over A is an arbitrary set of A-equations.
- Clearly, each A-equation has an equivalent form

$$
\sum_{i \in I} \gamma_{i} x_{i}+a=\sum_{j \in J} \gamma_{j} x_{j}+a^{\prime}
$$

where $a, a^{\prime} \in A$.

We can seek a solution of \mathcal{S} in every commutative monoid B.

We can seek a solution of \mathcal{S} in every commutative monoid B.
The solutions of \mathcal{S} over B is denoted by $V_{B}(\mathcal{S})$.

We can seek a solution of \mathcal{S} in every commutative monoid B.
The solutions of \mathcal{S} over B is denoted by $V_{B}(\mathcal{S})$.
We chose the most famous commutative monoid \mathbb{N} (the additive monoid of natural numbers) and studied its algebraic geometry (further $B=\mathbb{N}$). Below we generalize our results for \mathbb{N} to a wide class of commutative monoids.

- A set $Y \subseteq \mathbb{N}^{n}$ is called algebraic over \mathbb{N} if there exists a system of equations with $Y=\mathrm{V}_{\mathbb{N}}(\mathcal{S})$.
- A set $Y \subseteq \mathbb{N}^{n}$ is called algebraic over \mathbb{N} if there exists a system of equations with $Y=\mathrm{V}_{\mathbb{N}}(\mathcal{S})$.
- An algebraic set is said to be irreducible if it is not represented as a nontrivial union of algebraic sets.
- A set $Y \subseteq \mathbb{N}^{n}$ is called algebraic over \mathbb{N} if there exists a system of equations with $Y=\mathrm{V}_{\mathbb{N}}(\mathcal{S})$.
- An algebraic set is said to be irreducible if it is not represented as a nontrivial union of algebraic sets.
- The radical of a set Y (or a system \mathcal{S}) contains all A-equations satisfied by all points from Y (by all solutions of \mathcal{S}).
- A set $Y \subseteq \mathbb{N}^{n}$ is called algebraic over \mathbb{N} if there exists a system of equations with $Y=\mathrm{V}_{\mathbb{N}}(\mathcal{S})$.
- An algebraic set is said to be irreducible if it is not represented as a nontrivial union of algebraic sets.
- The radical of a set Y (or a system \mathcal{S}) contains all A-equations satisfied by all points from Y (by all solutions of \mathcal{S}).
- The radical of Y divides the set of \mathcal{L}_{A}-terms into equivalence classes. Indeed, two \mathcal{L}_{A}-terms $t(\bar{x}), s(\bar{x})$ are equivalent iff $t(\bar{y})=s(\bar{y})$ for all $y \in Y$. It is easy to prove that equivalence relation preserves the operation + , thus $\operatorname{Rad}_{\mathbb{N}}(Y)$ defines the congruence $\theta_{\text {Rad }}$.
- A set $Y \subseteq \mathbb{N}^{n}$ is called algebraic over \mathbb{N} if there exists a system of equations with $Y=\mathrm{V}_{\mathbb{N}}(\mathcal{S})$.
- An algebraic set is said to be irreducible if it is not represented as a nontrivial union of algebraic sets.
- The radical of a set Y (or a system \mathcal{S}) contains all A-equations satisfied by all points from Y (by all solutions of \mathcal{S}).
- The radical of Y divides the set of \mathcal{L}_{A}-terms into equivalence classes. Indeed, two \mathcal{L}_{A}-terms $t(\bar{x}), s(\bar{x})$ are equivalent iff $t(\bar{y})=s(\bar{y})$ for all $y \in Y$. It is easy to prove that equivalence relation preserves the operation + , thus $\operatorname{Rad}_{\mathbb{N}}(Y)$ defines the congruence $\theta_{\text {Rad }}$.

The quotient monoid $\Gamma_{A}(Y)=\mathrm{T}_{\mathcal{L}_{\mathbb{N}}}(X) / \theta_{\operatorname{Rad}_{B}(Y)}$, where $\mathrm{T}_{\mathcal{L}_{\mathbb{N}}}(X)$ is a set of all \mathcal{L}_{A}-terms, is called the coordinate A-monoid of Y. The operation + over $\Gamma_{A}(Y)$ is defined by

$$
[t(\bar{x})]+[s(\bar{x})]=[s(\bar{x})+t(\bar{x})]
$$

where $[t(\bar{x})]$ is the equivalence class of $t(\bar{x})$.

Main Aims of Algebraic Geometry

The main goal of algebraic geometry can be considered as a classification of
1 algebraic sets;
2 radicals;
3 coordinate monoids;

Fact. The monoid \mathbb{N} is A-equationally Noetherian, i.e. for each infinite system of A-equations \mathcal{S} which depends on a finite set of variables x_{1}, \ldots, x_{n} there exists a finite subsystem $\mathcal{S}_{0} \subseteq \mathcal{S}$ such that $V_{\mathbb{N}}(S)=V_{\mathbb{N}}\left(S_{0}\right)$.

Definitions for Unification Theorems

- An A-homomorphism φ is a homomorphism of A-monoid M and φ is an identity on $A(\varphi(a)=a, a \in A)$.

Definitions for Unification Theorems

- An A-homomorphism φ is a homomorphism of A-monoid M and φ is an identity on $A(\varphi(a)=a, a \in A)$.
- A universal formula has a form $\forall \bar{x} \Phi(\bar{x})$, where Φ is a quantifier-free formula.

Definitions for Unification Theorems

- An A-homomorphism φ is a homomorphism of A-monoid M and φ is an identity on $A(\varphi(a)=a, a \in A)$.
- A universal formula has a form $\forall \bar{x} \Phi(\bar{x})$, where Φ is a quantifier-free formula.
- A quasi-identity is a universal formula, where

$$
\Phi(\bar{x})=\left(t_{1}(\bar{x})=s_{1}(\bar{x})\right) \wedge \ldots \wedge\left(t_{m}(\bar{x})=s_{m}(\bar{x})\right) \rightarrow(t(\bar{x})=s(\bar{x})) .
$$

Definitions for Unification Theorems

- An A-homomorphism φ is a homomorphism of A-monoid M and φ is an identity on $A(\varphi(a)=a, a \in A)$.
- A universal formula has a form $\forall \bar{x} \Phi(\bar{x})$, where Φ is a quantifier-free formula.
- A quasi-identity is a universal formula, where

$$
\Phi(\bar{x})=\left(t_{1}(\bar{x})=s_{1}(\bar{x})\right) \wedge \ldots \wedge\left(t_{m}(\bar{x})=s_{m}(\bar{x})\right) \rightarrow(t(\bar{x})=s(\bar{x})) .
$$

We shall use standard denotations of algebraic geometry:

Definitions for Unification Theorems

- An A-homomorphism φ is a homomorphism of A-monoid M and φ is an identity on $A(\varphi(a)=a, a \in A)$.
- A universal formula has a form $\forall \bar{x} \Phi(\bar{x})$, where Φ is a quantifier-free formula.
- A quasi-identity is a universal formula, where $\Phi(\bar{x})=\left(t_{1}(\bar{x})=s_{1}(\bar{x})\right) \wedge \ldots \wedge\left(t_{m}(\bar{x})=s_{m}(\bar{x})\right) \rightarrow(t(\bar{x})=s(\bar{x}))$.
We shall use standard denotations of algebraic geometry:
- the letter 'D' means 'E. Daniyarova';
- the letter 'M' means 'A. Myasnikov';
- the letter 'R' means 'V. Remeslennikov'.

The First Unification Theorem

Theorem (DMR)

Suppose C is an A-monoid and C is finitely generated over A. Then the following conditions are equivalent:

1) C is a coordinate monoid of an algebraic set over \mathbb{N}, and this set is defined by a system of A-equations.
2) C is A-separated by \mathbb{N}. In other words, for an arbitrary elements c_{1}, c_{2}, $c_{1} \neq c_{2}$ there exists a A-homomorphism $\varphi: C \rightarrow \mathbb{N}$ such that $\varphi\left(c_{1}\right) \neq \varphi\left(c_{2}\right)$.
3) $C \in \operatorname{qvar}_{A}(\mathbb{N})$, i.e. each \mathcal{L}_{A}-quasi-identity which is true in \mathbb{N} holds in C.

The Second Unification Theorem

Theorem (DMR)

Suppose C is an A-monoid and C is finitely generated over A. Then the following conditions are equivalent:

1) C is a irreducible coordinate monoid of an algebraic set over \mathbb{N}, and this set is defined by a system of A-equations.
2) C is A-discriminated by \mathbb{N}. In other words, for an arbitrary elements $c_{1}, \ldots, c_{k}, c_{i} \neq c_{j}$ there exists a A-homomorphism $\varphi: C \rightarrow \mathbb{N}$ such that $\varphi\left(c_{i}\right) \neq \varphi\left(c_{j}\right)$.
3) $C \in \operatorname{ucl}_{A}(\mathbb{N})$, i.e. each \mathcal{L}_{A}-universal formula which is true in \mathbb{N} holds in C.

Comparing with the Group \mathbb{Z}

Theorem (a corollary from MR)

All coordinate groups over \mathbb{Z} are the direct products \mathbb{Z}^{n} and irreducible.

Coefficient-free equations

Positive property

In this subsection $A=\{0\}$.
A commutative monoid is called positive, if the following quasi-identity

$$
\forall x \forall y(x+y=0) \rightarrow(x=0) .
$$

holds. In other words, the sum of two nonzero elements of positive monoid is not a zero.
Obviously, M is positive iff the set $M \backslash\{0\}$ is a semigroup.

Classification of Coordinate Monoids in Coefficient-Free Case

Theorem

A finitely generated monoid M is a coordinate monoid of an algebraic set Y over \mathbb{N}, where Y is defined by coefficient-free equations, iff M is commutative positive and with cancellation property $(\forall x \forall y \forall z(x+z=y+z) \rightarrow(x=y))$.

Theorem

All algebraic sets over \mathbb{N} defined by coefficient-free systems are irreducible.

Model-Theoretic Corollary

The classes qvar ${ }_{0}(\mathbb{N}), \operatorname{ucl}_{0}(\mathbb{N})$ are equal and axiomatizable by the following \mathcal{L}-formulas

1 $\forall x \forall y \forall z(x+y)+z=x+(y+z)$;
2 $\forall x x+0=0+x=x$;
$3 \forall x \forall y x+y=y+x$;
$4 \forall x \forall y \forall z x+z=y+z \rightarrow x=y$ (cancellation property);
$5 \forall x \forall y x+y=0 \rightarrow x=0$ (positive property).

Geometrical Equivalence

1 Monoids M_{1}, M_{2} are called geometrical equivalent if $\operatorname{Rad}_{M_{1}}(\mathcal{S})=\operatorname{Rad}_{M_{2}}(\mathcal{S})$ for every system \mathcal{S}.
2 By definition, the geometrical equivalent monoids have the same set of coordinate monoids. Therefore, the obtained results for \mathbb{N} can be applied to the wide class of commutative monoids.

Geometrical Equivalence

1 Monoids M_{1}, M_{2} are called geometrical equivalent if $\operatorname{Rad}_{M_{1}}(\mathcal{S})=\operatorname{Rad}_{M_{2}}(\mathcal{S})$ for every system \mathcal{S}.
2 By definition, the geometrical equivalent monoids have the same set of coordinate monoids. Therefore, the obtained results for \mathbb{N} can be applied to the wide class of commutative monoids.

Theorem

Each nontrivial commutative positive monoid with cancellation property M is geometrical equivalent to \mathbb{N}. Moreover, all algebraic sets over M are irreducible, thus M is universal equivalent to \mathbb{N}.

Systems with Coefficients

Irreducible Coordinate Monoids

We can consider only the case $A=\mathbb{N}$, because each \mathbb{N}-equation can be transformed to an A-equation for every monoid $A \subseteq \mathbb{N}$.

Irreducible Coordinate Monoids

We can consider only the case $A=\mathbb{N}$, because each \mathbb{N}-equation can be transformed to an A-equation for every monoid $A \subseteq \mathbb{N}$.

An \mathbb{N}-monoid M is called \mathbb{N}-positive if for all pairs of nonzero elements $m_{1}, m_{2} \notin \mathbb{N}$ their sum does not belong to $\mathbb{N}\left(m_{1}+m_{2} \notin \mathbb{N}\right)$.

Irreducible Coordinate Monoids

We can consider only the case $A=\mathbb{N}$, because each \mathbb{N}-equation can be transformed to an A-equation for every monoid $A \subseteq \mathbb{N}$.

An \mathbb{N}-monoid M is called \mathbb{N}-positive if for all pairs of nonzero elements $m_{1}, m_{2} \notin \mathbb{N}$ their sum does not belong to $\mathbb{N}\left(m_{1}+m_{2} \notin \mathbb{N}\right)$.

The \mathbb{N}-positive property for \mathbb{N} is written by the series of \mathbb{N}-formulas $(\alpha \in \mathbb{N})$
$\varphi_{\alpha}=\forall x \forall y(x+y=\alpha) \rightarrow((x=0) \vee(x=1) \vee(x=2) \vee \ldots \vee(x=\alpha))$.
\mathbb{N}-monoid M is \mathbb{N}-positive iff the set $M \backslash \mathbb{N}$ is a semigroup.
\mathbb{N} is obviously \mathbb{N}-positive.

Theorem
 Suppose \mathbb{N}-monoid M is coordinate monoid of an algebraic set over \mathbb{N}. Then M is irreducible iff M is \mathbb{N}-positive.

Reducible Sets. They really exist.

There are reducible sets over \mathbb{N} defined by systems with coefficient. For example, the solution of $x+y=1$ is represented by the union $(0,1) \cup(1,0)$.

Reducible Sets. They really exist.

There are reducible sets over \mathbb{N} defined by systems with coefficient. For example, the solution of $x+y=1$ is represented by the union $(0,1) \cup(1,0)$.

Below we find necessary and sufficient conditions for an \mathbb{N}-monoid M to be coordinate over \mathbb{N}. First Unification Theorem made us to seek the set of quasi-identities \mathcal{Q} such that

1 if an \mathbb{N}-monoid $M \models \mathcal{Q}$ then the set of \mathbb{N}-homomorphisms $\operatorname{Hom}_{\mathbb{N}}(M, \mathbb{N})$ is not empty;
2 if an \mathbb{N}-monoid $M \models \mathcal{Q}$ then $\mathbb{N} \mathbb{N}$-separates M.

Congruent Closure

Let S be a set of atomic \mathcal{L}_{A}-formulas. The congruent closure $[S] \supseteq S$ is a minimal set with the properties

- If $t(\bar{x})=s(\bar{x}) \in S$, then $t(\bar{x})=t(\bar{x}) \in[S]$ and $s(\bar{x})=s(\bar{x}) \in[S]$.
- If $t(\bar{x})=s(\bar{x}) \in S$, then $s(\bar{x})=t(\bar{x}) \in[S]$.
- If $t(\bar{x})=s(\bar{x}), s(\bar{x})=u(\bar{x}) \in S$, then $s(\bar{x})=u(\bar{x}) \in[S]$.
- If $t_{1}(\bar{x})=s_{1}(\bar{x}), t_{2}(\bar{x})=s_{2}(\bar{x}) \in S$, then $t_{1}(\bar{x})+t_{2}(\bar{x})=s_{1}(\bar{x})+s_{2}(\bar{x}) \in[S]$.

Congruent Closure

Let S be a set of atomic \mathcal{L}_{A}-formulas. The congruent closure $[S] \supseteq S$ is a minimal set with the properties

- If $t(\bar{x})=s(\bar{x}) \in S$, then $t(\bar{x})=t(\bar{x}) \in[S]$ and $s(\bar{x})=s(\bar{x}) \in[S]$.
- If $t(\bar{x})=s(\bar{x}) \in S$, then $s(\bar{x})=t(\bar{x}) \in[S]$.
- If $t(\bar{x})=s(\bar{x}), s(\bar{x})=u(\bar{x}) \in S$, then $s(\bar{x})=u(\bar{x}) \in[S]$.
- If $t_{1}(\bar{x})=s_{1}(\bar{x}), t_{2}(\bar{x})=s_{2}(\bar{x}) \in S$, then $t_{1}(\bar{x})+t_{2}(\bar{x})=s_{1}(\bar{x})+s_{2}(\bar{x}) \in[S]$.

The congruent closure of a system of equations contains only elementary corollaries of this system. By definition, $[S] \subseteq \operatorname{Rad}_{\mathbb{N}}(S)$.

Radicals and Congruent Closures of \mathbb{N}-equations

If an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ has not a form $t^{\prime}(\bar{x})=n$ the radical $\operatorname{Rad}_{\mathbb{N}}(t(\bar{x})=s(\bar{x}))$ is equal to the congruent closure. The radical of an equation $t(\bar{x})=n$ often strictly contains the congruent closure of this equation.

Radicals and Congruent Closures of \mathbb{N}-equations

If an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ has not a form $t^{\prime}(\bar{x})=n$ the radical $\operatorname{Rad}_{\mathbb{N}}(t(\bar{x})=s(\bar{x}))$ is equal to the congruent closure. The radical of an equation $t(\bar{x})=n$ often strictly contains the congruent closure of this equation.

For example, consider the equation $4 x+3 y+7 z=7$ which has only two solutions $(0,0,1),(1,1,0)$. The radical of this equation is generated by $4 x+3 y+7 z=7$ and $x=y$ and therefore it is not equal to congruent closure of $4 x+3 y+7 z=7$.

In other words, the equation $4 x+3 y+7 z=7$ implies $x=y$, thus the quasi-identity

$$
\forall x \forall y \forall z(4 x+3 y+7 z=7) \rightarrow(x=y)
$$

must be true in every coordinate \mathbb{N}-monoid over \mathbb{N}.

Quasi-identities \mathcal{Q}

- Suppose an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ is unsolvable over \mathbb{Z}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=s(\bar{x})) \rightarrow(0=1)$.

Quasi-identities \mathcal{Q}

- Suppose an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ is unsolvable over \mathbb{Z}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=s(\bar{x})) \rightarrow(0=1)$.
■ Suppose an \mathbb{N}-equation of a form $t(\bar{x})=n$, and it is unsolvable over \mathbb{N}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=n) \rightarrow(0=1)$.

Quasi-identities \mathcal{Q}

- Suppose an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ is unsolvable over \mathbb{Z}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=s(\bar{x})) \rightarrow(0=1)$.
- Suppose an \mathbb{N}-equation of a form $t(\bar{x})=n$, and it is unsolvable over \mathbb{N}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=n) \rightarrow(0=1)$.
■ Suppose the equations $e q_{1}, \ldots, e q_{l}$ generate the radical of an equation $t(\bar{x})=n$. Then we write the quasi-identities
- $\forall \bar{x}(t(\bar{x})=n) \rightarrow e q_{1}$,

■ $\forall \bar{x}(t(\bar{x})=n) \rightarrow e q_{l}$,

Quasi-identities \mathcal{Q}

- Suppose an \mathbb{N}-equation $t(\bar{x})=s(\bar{x})$ is unsolvable over \mathbb{Z}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=s(\bar{x})) \rightarrow(0=1)$.
- Suppose an \mathbb{N}-equation of a form $t(\bar{x})=n$, and it is unsolvable over \mathbb{N}. Then we write a quasi-identity $\forall \bar{x}(t(\bar{x})=n) \rightarrow(0=1)$.
■ Suppose the equations $e q_{1}, \ldots, e q_{l}$ generate the radical of an equation $t(\bar{x})=n$. Then we write the quasi-identities
- $\forall \bar{x}(t(\bar{x})=n) \rightarrow e q_{1}$,
-...
■ $\forall \bar{x}(t(\bar{x})=n) \rightarrow e q_{l}$,

Theorem

A commutative \mathbb{N}-monoid with cancellation property M is a coordinate monoid of a nonempty algebraic set over \mathbb{N} iff all quasi-identities \mathcal{Q} hold in M.

Unions of Algebraic Sets

Suppose Y_{1}, \ldots, Y_{n} are algebraic irreducible sets and each Y_{i} does not contain in the union of $\bigcup_{j \neq i} Y_{j}$.

Further we find a criterion of the set $Y_{1} \cup \ldots \cup Y_{n}$ to be algebraic.

Theorem

Suppose $Y_{1} \cup \ldots \cup Y_{n}$ is algebraic. Then Y_{1}, \ldots, Y_{n} can be obtained as a parallel shift of the set Y_{0} via vectors with natural coordinates, where Y_{0} is algebraic and defined by a system of coefficient-free equations. (Necessary condition)

A variable x of a system \mathcal{S} is called fixed if $x=n \in \operatorname{Rad}_{\mathbb{N}}(\mathcal{S})$.

Theorem

Suppose systems $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ depend on variables x_{1}, \ldots, x_{m}, and let the union of the solutions of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be algebraic. Then all systems have the same nonempty set of fixed coordinates. (Necessary condition)

Criterion

Theorem

The union of algebraic sets Y_{1}, \ldots, Y_{n} is an algebraic set iff
1 there exist systems of a form

$$
\mathcal{S}_{1}=\left\{\begin{array}{l}
x_{1}=\alpha_{11}, \\
\ldots \ldots \\
x_{l}=\alpha_{1 l}, \\
t_{1}(\bar{y})+\beta_{11}=s_{1}(\bar{y}), \\
\ldots \ldots \\
t_{m}(\bar{y})+\beta_{1 m}=s_{m}(\bar{y}),
\end{array} \quad \ldots \mathcal{S}_{n}=\left\{\begin{array}{l}
x_{1}=\alpha_{n 1} \\
\ldots \ldots \\
x_{l}=\alpha_{n l}, \\
t_{1}(\bar{y})+\beta_{n 1}=s_{1}(\bar{y}) \\
\ldots \ldots \\
t_{m}(\bar{y})+\beta_{n m}=s_{m}(\bar{y})
\end{array}\right.\right.
$$

such that $V_{\mathbb{N}}\left(\mathcal{S}_{i}\right)=Y_{i}$
2 The union of the solutions of the subsystems with variables x_{j} is an algebraic set.
$3 \operatorname{rk}(A|e| B)=r k(A \mid B)$ (over the field \mathbb{R}), where $A=\left(\alpha_{i j}\right)$ is a $n \times l$-matrix, $B=\left(\beta_{i j}\right)$ is a $n \times m$-matrix, and e is a column of 1 .

Generalizations

Algebraic Geometry over the Additive Monoid of Natural Numbers

Generalizations

Suppose A, B are commutative positive monoids and $A \subseteq B$.

Theorem

Let M be a commutative A-positive monoid with cancellation property. Suppose the set of A-homomorphisms $\operatorname{Hom}_{A}(M, B)$ is not empty. Then M is irreducible coordinate monoid of an algebraic set over B.

Corollary

Let A-positive monoid M be a coordinate monoid of an nonempty algebraic set over B. Then M is irreducible.

Generalizations

Suppose A, B are commutative positive monoids and $A \subseteq B$.

Theorem

Let M be a commutative A-positive monoid with cancellation property. Suppose the set of A-homomorphisms $\operatorname{Hom}_{A}(M, B)$ is not empty. Then M is irreducible coordinate monoid of an algebraic set over B.

Corollary

Let A-positive monoid M be a coordinate monoid of an nonempty algebraic set over B. Then M is irreducible.

Remind that the theorem and corollary above contain only the necessary condition. Indeed, if $B=A=\mathbb{R}^{+}$and it is easy to prove that all algebraic sets over \mathbb{R}^{+}are irreducible. Moreover, there is not a universal formula which expresses \mathbb{R}^{+}-positiveness property.

